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Abstract. We consider a two-dimensional convection model augmented with the rotational
Coriolis forcing, centrifugal forcing as well as the quadratic potential V (x), ∂tU + (U − Ωx⊥) ·
∇xU = −ΩU⊥−∇xV , with a fixed Ω > 0 being the rotational frequency. This model arises in the
semiclassical limit of the Gross–Pitaevskii equation for Bose–Einstein condensates in a rotational
frame. We investigate whether the action of dispersive rotational forcing complemented with the
underlying potential prevents the generic finite time breakdown of the free nonlinear convection.
We show that the rotating equations admit global smooth solutions for and only for a subset
of generic initial configurations. Thus, the global regularity depends on whether the initial
configuration crosses an intrinsic critical threshold, which is quantified in terms of the initial
spectral gap associated with the 2× 2 initial velocity gradient, λ2(0)−λ1(0), λj(0) = λj(∇xU0)
as well as the initial divergence, divx(U0).

We also prove that for the case of isotropic trapping potential the smooth velocity field is
periodic if and only if the ratio of the rotational frequency and the potential frequency is a
rational number. The critical thresholds are also established for the case of repulsive potential.
Finally the position density and the velocity field are explicitly recorded along the deformed flow
map.
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1. Introduction and statement of main results

In this paper, we study the regularity of a 2-D convection model augmented by a
rotational force as well as the underlying potential V = V (x),

∂tU + (U − ΩJx) · ∇xU = −ΩJU −∇xV, J :=
(

0 1
−1 0

)
, (1.1)

subject to the smooth initial velocity, U(0, x) = U0(x). The associated position
density ρ is governed by a forced transport equation

∂tρ + ∇x · (ρU) = Ω〈Jx,∇xρ〉. (1.2)
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Here Ω is a given positive constant which signifies the frequency of the rota-
tional frame. The potential V is a given real-valued function. The unknowns
are the local density ρ = ρ(x, t) and the velocity field U = U(x, t). The sys-
tem (1.1)–(1.2) describes the dynamic behavior of some prototypical rotational
physical flows. Particularly this model also arises in the semiclassical limit of the
rotational Schrödinger equation for Bose–Einstein condensates(BEC). Historically
since the first experimental achievement of Bose–Einstein condensates in atomic
gases in 1995, many properties of BECs have been studied experimentally and
theoretically. The properties of a BEC at temperature very much smaller than the
critical condensation temperature Tc are usually modeled by a Schrödinger equa-
tion for the macroscopic wave function known as the Gross–Pitaevskii equation
(GPE). The vortices are produced when putting the BEC in a rotational frame,
and the trapping potential can therefore be made time-independent, see e.g. [1, 4]
and references therein.

The re-scaled GPE with ignored atomic interaction reads

iε∂tψ(x, t) = −ε2

2
∆ψ(x, t) + iεΩ〈x⊥,∇xψ〉 + V (x)ψ(x, t), (1.3)

where ψ is the complex wave field, V (x) = 1
2 |ω · x|2 is the trapping potential, and

ε > 0 denotes a re-scaled Planck constant. Here the regime of interest is the so
called semiclassical regime as ε tends to zero. Customarily the high frequency field
is sought in the WKB form

ψ = A(x, t) exp (iS(x, t)/ε) .

Insertion of this ansatz into the wave equation (1.3) yields the leading order ap-
proximation (with O(ε2) terms ignored) for the phase function S = S(x, t),

∂tS +
1
2
|∇xS|2 − Ω〈Jx,∇xS〉 + V (x) = 0,

which upon differentiation gives the equation (1.1) for phase gradient U = ∇S,
with the position density ρ := A2 satisfying the transport equation (1.2).

Apart from the Bose–Einstein condensate, problem (1.3) with highly oscillatory
initial data arises in many contexts in classical wave propagation, such as the
paraxial approximation of forward propagating waves [11], radio engineering [12],
laser optics [24], underwater acoustics [25], the investigation of light and sound
propagating in turbulent atmosphere [26], seismic wave propagation in the earth’s
crust [22], etc. In these applications, the potential V is explicitly related to the
feature of the propagating medium.

Note that in equation (1.1) there is a competition between the finite-time break-
down dynamics driven by the nonlinear convection and the balancing act of ro-
tational forcing as well as the underlying potential. As remarked in [18], in the
classical hydrodynamic system three prototypes of forcing mechanisms which of-
ten come into effect are dissipation, relaxation and dispersion. It is well known
that a sufficiently large amount of either dissipation or relaxation is crucial for
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a global smooth solution for a rich enough class of initial data. In both cases of
dissipation and relaxation, global existence is secured by enforcing a sufficiently
large amount of energy decay. Dispersive forcing, however, is different. We point
out that when singularity arises at the hydrodynamic level the physically rele-
vant solution in this context is usually multi-valued, consult e.g., [7, 13, 28] for
a recent development of numerical methods for computing multi-valued physical
observables in the semiclassical limit of Schrödinger equations.

The system (1.1)–(1.2) admits a global energy invariant in time, which depends
on the amplitude of rotation encoded by the rotational frequency Ω as well as the
potential V in (1.1). A formal calculation shows that the global invariance of the
generalized energy follows

E(t) :=
∫

x

[
1
2
ρ(t, x)|U(t, x) − ΩJx|2 + ρ(V (x) − Ω2

2
|x|2)

]
dx = E(0).

However, this global invariant alone is not enough for justifying the time-regularity
of the velocity field.

Note that if the potential and the centrifugal force can be ignored, system (1.1)
will reduce to

∂tU + U · ∇xU = −ΩJU,

for which regularity effect of the rotational forcing has been recently studied in
[18]. It was shown that global regularity of the velocity field is ensured if and only
if

Γ0(x) − 2Ωω0(x) < Ω2, ∀x ∈ IR2,

where ω0 = ∇x ×U0 is the initial vorticity, and Γ0 := (λ2(0)−λ1(0))2 with initial
eigenvalues λi(0) := λi (∇xU0) reflects the initial spectral gap.

It is known that in a rotational reference frame, in addition to the Coriolis
forcing −ΩJU , the ‘particle’ also experiences the centrifugal force, which depends
solely on the rotation rate Ω and the distance of the particle to the rotation axis,
ΩJx. However, for flows on rotating planet, the centrifugal force is unimportant
since it is counter-balanced by the gravitational force pointing toward the planet’s
center. Therefore the result obtained in [18] applies to, among others, fluid dy-
namic problems on rotating planet.

In other contexts, say the above mentioned BECs, the centrifugal force has
to be taken into consideration, as described by (1.1)–(1.2). The main quest in
this paper is whether the action of dispersive rotational forcing together with
the underlying potential prevents the generic finite time breakdown of nonlinear
convection. Note that the system (1.1)–(1.2) is weakly coupled since the velocity
can be solved independently from the density equation, therefore we may discuss
velocity regularity for (1.1) independent of (1.2). We show that (1.1) admits
global smooth solutions for and only for a subset of generic initial configurations,
U0. Thus, global regularity depends on whether the initial configuration crosses an
intrinsic critical threshold, which is quantified in terms of the initial spectral gap,
Γ0 := (λ2(0) − λ1(0))2, as well as the initial divergence divx(U0) = λ1(0) + λ2(0).
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Theorem 1.1 (Critical Thresholds). Consider the 2D rotational model (1.1)
with Ω > 0. Then the solution of (1.1) with initial velocity U(x, 0) = U0(x) remains
smooth for all time if and only if the initial velocity gradient ∇xU0 satisfies

• for isotropic trapping potential V (x) = 1
2ω2|x|2

Γ0(x) < 0, ∀x ∈ IR2. (1.4)

• for isotropic repulsive potential V (x) = −1
2ω2|x|2, ω ≥ 0

Γ0(x) < 0 or divx(U0) ≥
√

Γ0(x) − 2ω,∀x ∈ IR2. (1.5)

Several remarks are in order.
1. We note that in the semiclassical regime of the Schrödinger equation the

velocity gradient is the Hessian of the phase S and has only real eigenvalues, i.e.,
Γ0 ≥ 0. Therefore Theorem 1.1 shows that the O(ε2) perturbations ignored in the
formal derivation of the WKB system from (1.3) will become significant in finite
time. Such results, however, do not bear directly on some current BEC models
since in the physical setting as stated in [1], the particles are confined within a
bounded domain. It would be of interest to refine the estimate in this paper, by
taking into account the above confinements.

2. The critical threshold (1.4) or (1.5) is independent of the initial vorticity
ω0 := ∇x × U0 for the case of both trapping and repulsive potential, which is in
contrast to the critical thresholds presented in [18].

3. The equation (1.1) with repulsive potential does admit global smooth solu-
tions with negative initial divergence in contrast to the free transport (Ω = 0, ω =
0) equation. It follows that rotation with time-independent potential prevents fi-
nite time breakdown by a large initial rotation (Γ0 < 0) or the divergence which
is not too negative.

4. If we set Ω = 0, i.e., (1.1) with null rotation, then the equation (1.1) with
trapped potential is reduced to the system

∂tU + U · ∇xU = −ω2x,

with critical threshold Γ0 < 0. To interpret results stated in Theorem 1.1 in this
simple setting, we observe that the velocity gradient M := ∇xU satisfies

∂tM + (U · ∇x)M + M2 = −ω2I2×2.

Note that the particle path is defined by{
dX
dt = U(X, t), X(0) = α,
dU
dt = −ω2X, U(0) = U0(α),

which can be explicitly solved as

X = α cos(ωt) +
U0

ω
sin(ωt), U(t) = U0(α) cos(ωt) − ωα sin(ωt).
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Along this particle path eigenvalues of M evolve according to

dλ

dt
+ λ2 = −ω2, λ = λi, i = 1, 2,

which has global bounded solution if and only if the initial data λ0(α) is purely
complex, that is Γ0(α) < 0, ∀α ∈ IR2. For the repulsive potential the velocity
field evolves as

∂tU + U · ∇xU = ω2x,

with critical threshold {Γ0 < 0} ∪ {dixx(U0) ≥
√

Γ0 − 2ω}. Note that the particle
path defined by {

dX
dt = U(X, t), X(0) = α,
dU
dt = ω2X, U(0) = U0(α),

has an explicit expression

X = αcosh(ωt) +
U0

ω
sinh(ωt), U(t) = U0(α)cosh(ωt) − ωαsinh(ωt).

The velocity gradient M := ∇xU satisfies

∂tM + (U · ∇x)M + M2 = ω2I2×2.

Along the particle path the eigenvalue of M evolves as

dλ

dt
+ λ2 = ω2, λ = λi, i = 1, 2.

which has global bounded solution iff the initial data λ0(α) is purely complex or
λ0(α) ≥ −ω which is equivalent to {Γ0 < 0} ∪ {Γ0 ≥ 0, divx(U0) ≥

√
Γ0 − 2ω}.

To put our study in a proper perspective we recall that there has been a consid-
erable amount of literature available on the global behavior of the nonlinear convec-
tion driven by rotational forcing and related problems, from rotating shallow-water
models [10, 14, 21] to rotating incompressible Euler and Navier-Stokes equations
[2, 3, 8, 5]. The common feature of the flows studied in this context are rotation
dominated flow for which the Rossby number Ω−1 is small. It is well known that
large-scale atmospheric (or oceanic) fields are in permanent process of Rossby (or
geostrophic) adjustment [19]. The flow structure has been extensively studied in
terms of Ω−1, say in [2, 10], based on the averaging of the interaction of the fast
waves of the rotating Euler equation, two dimensional structures were shown to
emerge in the limit Ω−1 → 0; for bounds of the vertical gradients of the Lagrangian
displacement that vanish linearly with the maximal local Rossby number [8]; for a
nonlinear theory of geostrophic adjustment for the rotating shallow-water model
under the assumption of the smallness of the Rossby number [21]; consult [14] for
the analysis of an approximation of the rotating shallow-water equation.

It is known that the classical stability analysis is not enough to reveal the
conditional stability phenomena in nonlinear problems. To address such difficulty
we advocated, in [9, 15, 16], a new notion of critical threshold (CT) which describes
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conditional stability, where the answer to the question of global vs. local existence
depends on whether the initial configuration crosses an intrinsic critical threshold.
The critical threshold (CT) was completely characterized for the 1D Euler-Poisson
system in terms of the relative size of the initial velocity slope and the initial
density; consult [15, 27] for the CT in convolution models for conservation laws.
Moving to the multi-D setup, one has first to identify the proper quantities which
govern the critical threshold phenomena. In [17, 18] we have shown that these
quantities depend in an essential manner on the eigenvalues of the velocity gradient
matrix, λ(∇xU).

The critical threshold for the current rotation model can also be obtained,
in a straightforward manner, through a Lagrangian flow formulation. This is
summarized in the Theorem 1.2 below. In Section 3 we prove

Theorem 1.2 (Lagrangian Dynamics of Velocity Field). Let the deformed
flow map and associated velocity field be determined by

Ẋα :=
dXα

dt
= U(Xα) − ΩJXα,

U̇(Xα) = −ΩJU(Xα) −∇xV

with initial position Xα(0) = α and initial velocity U(α, 0) = U0(α). Then,

• for trapping potential, V = ω2

2 |x|2

Xα(t) = e−ΩJt

(
cos(ωt)α +

sin(ωt)
ω

U0(α)
)

,

U(t) = e−ΩJt (−ω sin(ωt)α + cos(ωt)U0(α)) ,

which are periodic with periodicity of least common of 2π/Ω and 2π/ω;
• for repulsive potential, V = −ω2

2 |x|2

Xα(t) = e−ΩJt

(
cosh(ωt)α +

sinh(ωt)
ω

U0(α)
)

,

U(t) = e−ΩJt (−ωsinh(ωt)α + cosh(ωt)U0(α)) ,

• for null potential, V = 0

Xα(t) = e−ΩJt (α + tU0(α)) ,

U(t) = e−ΩJtU0(α).

For sub-critical initial data, i.e., (1.4) or (1.5) is satisfied, the above deformed flow
maps are invertible and the associated velocity fields remain regular for all time.

Finally we conclude in Section 5 with the density behavior along the deformed
flow map.

Theorem 1.3. Let U be the velocity field governed by (1.1) and ρ be the associated
density satisfying (1.2). The density remains bounded if and only if the velocity
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field remains smooth, which is ensured by the sub-critical initial data, i.e., (1.4)
or (1.5). Moreover the density can be explicitly expressed along the deformed flow
map by

ρ(Xα(t), t) =
ρ0(α)
I(t)

,

where
• for trapped potential V (x) = 1

2ω2|x|2,

I(t) := cos2(ωt) +
∇x · U0

ω
cos(ωt) sin(ωt) +

det(∇xU0)
ω2

sin2(ωt),

• for repulsive potential V (x) = −1
2ω2|x|2,

I(t) := cosh2(ωt) +
∇x · U0

ω
cosh(ωt)sinh(ωt) +

det(∇xU0)
ω2

sinh2(ωt),

• for null potential V (x) = 0,

I(t) := 1 + ∇x · U0t + det(∇xU0)t2.

After the present section, Section 2 is devoted to a formal passage between the
rotational Schrödinger equation and the hydrodynamic system (1.1)–(1.2), identi-
fied as the semi-classical limiting system of the underlying Schrödinger equation.
In Section 3 and 4 below, we quantify critical thresholds using both the Lagrangian
and Eulerian formulations.

2. WKB system of rotational Schrödinger equation

If a harmonic trap potential is considered, the rotational Gross–Pitaevskii equation
becomes

i�∂tψ(x, t)

= − �
2

2m
∆ψ(x, t) + i�Ω〈x⊥,∇xψ〉 +

m

2
|ω · x|2ψ(x, t) + NP0|ψ(x, t)2|ψ(x, t),

where x ∈ IR2 is the spatial coordinate vector, m is the atomic mass, � is the
Planck constant, N is the number of atoms in the condensate, and ω denotes the
trap frequency. P0 describes the interaction between atoms in the condensate and
has the form

P0 =
4π�

2a

m

where a is the s-wave scattering length. Let L be the characteristic “length” of
the condensate. Under the following scaling

(x, t, ψ) → (L−1x, t, L3/2ψ(x, t))
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the GPE is reduced to

iε∂tψ(x, t)

= −ε2

2
∆ψ(x, t) + iεΩ〈x⊥,∇xψ〉 +

1
2
|ω · x|2ψ(x, t) + δε5/2|ψ(x, t)2|ψ(x, t),

where ε = �

mL2 and δ = 4πaN
√

m
�

.
We are interested in the high frequency propagating waves for the linearized

rotational Schödinger equations with fast space-time scales

iε∂tψ
ε = −ε2

2
∆ψε + iεΩ〈Jx,∇xψ〉 + V (x)ψε, x ∈ IR2, J =

(
0 1
−1 0

)
,

(2.1)

subject to the high frequency initial data

ψε(x, 0) = A0(x) exp
(

i
S0(x)

ε

)
, (2.2)

where ψε is the complex wave field, V (x) is a given potential function, and ε > 0,
appearing in both the equation and the initial data, denotes a re-scaled Planck
constant.

The connection between Schrödinger equations and the classical hydrodynamics
was already noted in 1927 by Madelung, in the context of semi-classical limit of
the nonlinear Schrödinger equation. To this end, one identifies two physically
relevant observable quantities–the fluid density ρ := |ψ|2, and the fluid velocity
U = ε∇xarg(ψ). Indeed, introducing S as the phase of the wave function ψε, the
WKB solution is sought in the form of

ψε(x, t) =
√

ρ(x, t) exp(iS(x, t)/ε).

Insertion of this ansatz into (2.1) and balance terms of O(1) order in ε with separate
real and imaginary parts gives the separate equations for ρ and S. The phase
function S will satisfy a perturbed nonlinear first order equation of the Hamilton-
Jacobi type

∂tS +
1
2
|∇xS|2 − Ω〈Jx,∇xS〉 + V (x) =

ε2

2
∆
√

ρ√
ρ

, (2.3)

and the position density ρ solves a forced transport equation

∂tρ + ∇ · (ρ∇S) = Ω〈Jx,∇xρ〉.
The resulting phase equation (2.3) amounts to a dispersive regularization with the
square of ε on the right of (2.3) playing the role of the amplitude of dispersion. If
we argue formally that this O(ε2) term in the phase equation is negligible as ε → 0,
then the corresponding limiting system when rewritten for density ρ and velocity
U = ∇xS is nothing but the system (1.1)–(1.2). The dispersive regularization
term in the phase equation represents a quantum correction, and the system (1.1)–
(1.2) governing the observables (ρ, U) describes the quantum Eulerian dynamics
in rotating frame.
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The above argument is, of course, only formal. The Madelung’s transformation
relies on the assumption that the amplitude ρ does not vanish and that the phase
S remains nonsingular, for otherwise the transformation is not well-defined and
the hydrodynamic system becomes singular, even though the Schrödinger equation
itself is still regular. One of interesting issues here is to justify such a dispersive
limit. The asymptotics of the observable quantities as ε → 0 is known as ‘semi-
classical’, expressing the passage from quantum to Newton mechanics, where the
time and distance scales become large enough relative to Planck’s constant.

As indicated by the nonlinear convection term the rotational momentum equa-
tion (1.1) in general develops a singularity in finite time. The justification of the
‘semi-classical’ limit hinges on whether we are able to establish the global regu-
larity for the limiting system (1.1)–(1.2), which is actually the main goal of this
work.

3. Lagrangian dynamics of velocity field

This section is devoted to the study of structures of the deformed flow map as well
as the associated velocity field. We focus on the isotropic quadratic potential, i.e.,
ω2

1 = ω2
2 and distinguish cases of trapped, repulsive as well as the null potential.

Let x = Xα(t) be the deformed flow map due to the centrifugal force with
initial position Xα(0) = α, and U(t) := U(Xα(t), t) be the associated velocity
field, then it follows from (1.1) that

Ẋα :=
dXα

dt
= U(t) − ΩJXα, Xα(0) = α, (3.1)

U̇ :=
dU(Xα, t)

dt
= −ΩJU −∇xV (Xα), U(0) = U0(α). (3.2)

3.1. Trapping potential

For isotropic trapping potential V (x) = 1
2ω2|x|2, the velocity U in (3.2) evolves as

U̇ = −ΩJU − ω2Xα.

Let Y (t) := eΩJtXα and V (t) := eΩJtU , a simple calculation yields

Ẏ = eΩJt(Ẋα + ΩJXα) = eΩJtU = V,

V̇ = eΩJt(U̇ + ΩJU) = −ω2eΩJtXα = −ω2Y.

For the space-dependent component Y one has

Ÿ + ω2Y = 0,

subject to the initial condition

Y (t = 0) = Xα(t = 0) = α, V (t = 0) = U0(α).
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Its explicit solution is

Y = cos(ωt)α + sin(ωt)U0(α)/ω, V = Ẏ = −ω sin(ωt)α + cos(ωt)U0(α),

where U0(α) is the initial velocity at location α. This together with the used
transformation (Xα, U) → (Y, V ) leads to the deformed flow map

Xα(t) = e−ΩJtY = e−ΩJt

(
cos(ωt)α +

sin(ωt)
ω

U0(α)
)

,

and the velocity field

U(t) = e−ΩJtV = e−ΩJt (−ω sin(ωt)α + cos(ωt)U0(α)) .

Note that the exponential function

e−ΩJt =
(

cos(Ωt) − sin(Ωt)
sin(Ωt) cos(Ωt)

)
,

is periodic with periodicity 2π/Ω. Therefore the deformed flow map as well as the
associated velocity field, as a product of two periodic functions with periodicity
2π/Ω and 2π/ω, respectively, is periodic if and only if they remain smooth and
the ratio, ω/Ω, is a rational number. In fact the deformed flow map determines
the unique smooth velocity field U if and only if the indicator matrix,

∇αXα(t) = e−ΩJt

(
cos(ωt)I2×2 +

sin(ωt)
ω

∇xU0(α)
)

,

remains nonsingular. A straightforward calculation, in virtue of det(e−ΩJt) = 1,
gives its determinant as

det (∇αXα(t)) = det(e−ΩJt) · det
(

cos(ωt)I2×2 +
sin(ωt)

ω
∇xU0(α)

)

= cos2(ωt) +
∇x · U0

ω
cos(ωt) sin(ωt) +

det(∇xU0)
ω2

sin2(ωt). (3.3)

Thus ∇αXα(t) remains nonsingular for all time if and only if det (∇αXα(t)) 
= 0,
i.e.,

(∇xU0)2 − 4det(∇U0) < 0. (3.4)

The spectral gap Γ0 = (λ02 − λ01)2 relates the determinant and the divergence as

Γ0 = (∇x · U0)2 − 4det(∇αU0).

This when applied to the above inequality (3.4) implies that the initial spectral
gap is imaginary, i.e.,

Γ0(α) < 0, ∀α ∈ IR2,

which is exactly the critical threshold (1.4) stated in Theorem 1.1.
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3.2. Repulsive potential

For the isotropic repulsive potential V (x) = − 1
2ω2|x|2 the deformed flow map and

the velocity field satisfy a closed ODE system

Ẋα = U(t) − ΩJXα,

U̇ = −ΩJU + ω2Xα,

with initial position Xα(0) = α and the initial velocity U0(α). By the transfor-
mation approach as performed previously we can obtain for Y (t) := eΩJtXα and
V (t) := eΩJtU

Ẏ = V, V̇ = ω2Y.

For the component Y one has

Ÿ − ω2Y = 0,

its general solution is

Y = Ae−ωt + Beωt, V = Ẏ = −Aωe−ωt + Bωeωt.

Using the initial condition

Y (t = 0) = α, V (t = 0) = U0(α),

one gets

A =
1
2
(α + U0(α)/ω), B =

1
2
(α − U0(α)/ω).

Therefore we obtain the deformed flow map

Xα(t) = e−ΩJt

(
cosh(ωt)α +

sinh(ωt)
ω

U0(α)
)

,

and the velocity field

U(t) = e−ΩJt (−ωsinh(ωt)α + cosh(ωt)U0(α)) .

The deformed flow map determines the unique smooth velocity field U if and only
if the indicator matrix,

∇αXα(t) = e−ΩJt

(
cosh(ωt)I2×2 +

sinh(ω)t
ω

∇xU0(α)
)

remains nonsingular. A straightforward calculation, in virtue of det(e−ΩJt) = 1,
gives its determinant as

det (∇αXα(t)) = det
(
e−ΩJt

) · det
(

cosh(ωt)I2×2 +
sinh(ω)t

ω
∇xU0(α)

)

= cosh2(ωt) +
∇x · U0

ω
cosh(ωt)sinh(ωt) +

det(∇xU0)
ω2

sinh2(ωt)

(3.5)

= cosh2(ωt) · F (tanh(ωt)),
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where

F (τ) = 1 +
∇x · U0

ω
τ +

det(∇xU0)
ω2

τ2.

Note that tanh(ωt) runs over [0, 1] for t ∈ [0,∞), also the possible zero of F is
attained at

τ∗ = ω · −∇x · U0 ±
√

(∇x · U0)2 − 4det(∇xU0)
2 det(∇xU0)

=
−2ω

d0 ±
√

Γ0

, d0 := divx(U0).

These facts show that det(∇αXα(t)) 
= 0 for all time if and only if either Γ0 < 0
(τ∗ is complex) or d0 ≥ √

Γ0 − 2ω for Γ0 ≥ 0 (τ∗ /∈ [0, 1]), which is the critical
threshold (1.5) stated in Theorem 1.1.

In order to have a complete picture we discuss the case with zero potential
ω = 0. In this case we have the deformed flow map

Xα(t) = e−ΩJt[α + tU0(α)]

and the velocity field
U(t) = e−ΩJtU0(α).

Therefore the indicator matrix is

∇αXα(t) = e−ΩJt (I2×2 + t∇xU0(α)) .

The solution remains bounded if and only if ∇αXα(t) remains nonsingular, i.e.,

det (∇αXα(t)) = 1 + t∇x · U0(α) + t2 det(∇xU0) 
= 0 (3.6)

for all time t > 0. The possible zero of the above function is

t∗ =
−∇x · U0 ±

√
(∇x · U0)2 − 4 det(∇xU0)
2 det(∇xU0)

=
−2

d0 ±
√

Γ0

.

Therefore det (∇αXα(t)) 
= 0 iff either Γ0 < 0 (complex t∗) or d0 ≥ √
Γ0 for

Γ0 ≥ 0 (t∗ < 0). Note also that in this case the deformed particle path is no
longer a periodic function, and the velocity field is still periodic with periodicity
2π/Ω.

4. Velocity gradient

Along the smooth deformed particle path we now track the dynamics of the velocity
gradient as well as the associated density function. Rewrite the system (1.1)–(1.2)
as

(∂t + (U − ΩJx) · ∇x)ρ = −ρ∇ · U,

(∂t + (U − ΩJx) · ∇x)U = −ΩJU −∇xV.

Let velocity gradient be M := ∇xU , take the gradient of the momentum equation
one has

(∂t + (U − ΩJx) · ∇x) M + M2 = −∇⊗∇V (x). (4.1)
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Consider a generalized nonlinear transport equation, ∂tU +(U −ΩJx) ·∇xU = F ,
and we trace the evolution of ∇xU in terms of its eigenvalues, λ := λ(∇xU)(t, x).
The following result is a generalized version of the Spectral Dynamics Lemma 3.1
stated in [16].

Lemma 4.1. Let λ := λ(∇xU)(t, x) denote an eigenvalue of ∇xU with corre-
sponding left and right normalized eigenpair, 〈�, r〉 = 1. Then λ is governed by the
forced Riccati equation

∂tλ + (U − ΩJx) · ∇xλ + λ2 = 〈�,∇xFr〉.

We shall use Lemma 4.1 to obtain the remarkable explicit formulae for the
critical threshold surfaces summarized in the main Theorems 1.1.

Applying the spectral dynamics Lemma 4.1 to (4.1), we obtain the spectral
dynamic equations

∂tλ1 + (U − ΩJx) · ∇xλ1 + λ2
1 = −〈l1,∇⊗∇V (x)r1〉, (4.2)

∂tλ2 + (U − ΩJx) · ∇xλ2 + λ2
2 = −〈l2,∇⊗∇V (x)r2〉, (4.3)

where λi, i = 1, 2 are eigenvalues of the velocity gradient field ∇xU associated with
left (row) eigenvectors li and right (column) eigenvectors ri.

Note that in the current setting, the potential is quadratic and isotropic and
therefore

∇x ⊗∇xV (x) = ±ω2I2×2.

Equipped with the above relations we end up with a closed decoupled system for
(λ1, λ2) along the deformed particle path X(α, t) (here and below ˙ ≡ ∂t + (U −
ΩJX) · ∇x)

λ̇ + λ2 = ±ω2, λ = λ1(t) or λ2(t). (4.4)

Here the eigenvalue λ(t) could be a complex function in time. One may introduce
the real quantities (Γ, d) = ((λ2 − λ1)2, λ1 + λ2), which solve a closed coupled
system

d′ = −d2 + Γ
2

± 2ω2, (4.5)

Γ′ = −2dΓ. (4.6)

The question here is what conditions should be imposed on the initial data (d0,Γ0)
so that (d,Γ) are bounded globally in time. This being said we still use eigenvalues
to identify such critical condition since equations for λ1 and λ2 are decoupled, even
though they might be complex functions.

There are three cases to be considered:

(1) Trapping potential, λ̇ + λ2 = −ω2.
The Ricatti type equation above has global bounded solution only if the initial data
are complex, which is equivalent to the negativity of the spectral gap indicator,
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i.e.,
Γ0(α) < 0, α ∈ IR2.

Also formally one could find the time dependent eigenvalues

λ(t) = ωtan(tan−1(λ(0)/ω) − ωt), λ = λi i = 1, 2. (4.7)

The eigenvalues are periodic functions in time with periodicity π/ω. Thus the
divergence d = λ1(t) + λ2(t) is also periodic and bounded. It follows that the
boundedness of the divergence implies the boundedness of the whole velocity gra-
dient: from (4.1) we see that the anti-trace of M , r = vx + uy, the anti-vorticity
ux − vy as well as the vorticity, uy − vx, satisfy the same transport equation
ṙ+dr = 0, these together with bounded divergence d := ∇x ·U yield the bounded-
ness of velocity gradient ∇xU . The whole velocity gradient is also periodic in time
with periodicity 2π/ω. Also the boundedness of the divergence along the particle
path enables us to conclude that the density is also bounded.

(2) Null potential, λ̇ + λ2 = 0.
The eigenvalues remain bounded for all time if and only if either the initial eigen-
value is complex or λ0 ≥ 0 with bounded solution given by

λ(t) =
λ0

1 + λ0t
, λ = λi, i = 1, 2. (4.8)

These conditions when expressed as the divergence d0 = divx(U0) and the spectral
gap Γ0 are equivalent to the critical thresholds described in (1.5), i.e.,

Γ0(x) < 0 or d0(x) ≥
√

Γ0(x), ∀x ∈ IR2.

(3) Repulsive potential
In this case the eigenvalue λ(t) satisfy ḋ = ω2 − λ2, which has global bounded
solution for all time if and only if either the initial eigenvalues are complex or real
bigger than −w. This condition on eigenvalues when expressed in terms of the
divergence and the spectral gap is equivalent to (1.5), i.e.,

Γ0(α) < 0 or d0(α) ≥
√

Γ0(α) − 2ω, ∀α ∈ IR2.

In this setting the bounded eigenvalues are determined by

λ(t) =
λ0(α)cosh(ωt) + ωsinh(ωt)
λ0(α)sinh(ωt) + ωcosh(ωt)

ω, λ = λi, i = 1, 2. (4.9)

As discussed for trapping potential case the whole velocity gradient is of dependent
on the divergence, therefore on eigenvalues.

5. Position density

Lemma 5.1. Let A(t) be a smooth, nonsingular 2×2 matrix-valued function, then

Trace

(
dA

dt
A−1

)
≡ d

dt
(ln(det(A))) .
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This relation can be justified by a straightforward calculation. Using this fact
we establish the following

Lemma 5.2. For the sub-critical initial velocity gradient, i.e., one of (1.4)–(1.5)
is satisfied, the divergence of the velocity remains bounded. Moreover

exp
(∫ t

0

∇x · U(τ)dτ

)
= det (∇αXα(t)) . (5.1)

Proof. It follows from
Ẋα = U(Xα, t) − ΩJXα

that
d

dt
(∇αXα(t)) = (∇xU − ΩJ) · ∇αXα(t).

Since ∇αXα(t) remains nonsingular for sub-critical initial velocity gradient, one
may rewrite the above as

∇xU − ΩJ =
d

dt
(∇αXα(t)) · (∇αXα(t))−1

.

Taking the trace on both sides and using Lemma 5.1 we obtain

∇x · U =
d

dt
(ln(det(∇αXα(t)))) .

Note that at initial time det(∇αXα(t)) = 1. Hence the asserted relation (5.1)
follows from the integration of this equation over [0, t].

Equipped with the relation (5.1) we are in a position to study the behavior of
the position density. Along the deformed flow map Xα(t) the density is known to
satisfy

dρ

dt
= −ρ∇x · U.

Upon integration one gets

ρ(Xα(t), t) = ρ0(α) · exp
(
−

∫ t

0

∇x · U(τ)dτ

)
,

which when combined with Lemma 5.2 and the explicit relations, (3.3), (3.5)
and (3.6), for det(∇αXα(t)) found in Section 2 establishes the results asserted in
Theorem 1.3.

As an alternative one may use the relation ∇x · U = λ1 + λ2 to get

ρ(t) = ρ0 exp
(
−

∫ t

0

(λ1(τ) + λ2(τ))dτ

)
,

which, based on the eigenvalues given in (4.7)–(4.9), again leads to the asserted
formula for position density stated in Theorem 1.3.
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